have thicker rails going up the sides of the back, stopping abruptly at the heart. In contrast, the reeds made in the desert generally showed greater distinction between sections, while being very defined and having little or no rails. The other reeds were in-between the two: not as integrated as the reeds of Flagstaff, but not as defined as the reeds from the desert.

In measuring the overall length of the various reeds and their tips, I found important differences as well. The reeds from the Northeast and Flagstaff had an average length of just under 70mm, while the reeds from the desert were 69mm, as a rule. In speaking with my colleagues who regularly make reeds in the desert, I have found that many of them use shorter tubes, sometimes as short as 45mm. The resulting reed is shorter than the reeds I make. The biggest difference in the measurement of the reeds came with the tips. The reeds from the Northeast had a tip length on the sides of 3mm and 2.5mm in the middle. The reeds from Flagstaff had even longer tips with a more exaggerated arch, averaging 3.5mm on the sides and 2.5mm in the middle. The reeds from the desert went in exactly the opposite direction, with a 2.5mm side and a 2mm middle to the tip. On some of the reeds from the desert, there was even less of an arch and some were straight across.

With reeds from the Northeast as a norm, one can now make some generalizations about the reeds made in the desert or at high altitude. Desert reeds are generally shorter with a shorter, straight across tip. They have a very defined look, but with normal relationships of back to spine, although they have smaller or no rails. The reeds of Flagstaff, a high altitude desert, have thinner, longer, and more arched tips with a more exaggerated spine to back relationship. While at the same time, they look more integrated and have heavier rails.

By observing and measuring reeds made in different locations, I have been able to overcome some of the dangers of reed making when traveling to different altitudes in different parts of the country. Here are also a few other rules I have developed. I have found it is best to make the reed—from wrapping through scraping—in the location I am going to use it. Sometimes you can get away with adjusting an existing reed, but the best results always come with reeds made on-location. When reeds are brought from one altitude to another, I have found that the reed takes six to eight hours to change, at which point they will often become unusable. Whenever possible, I have left reeds in storage at the lower altitudes. When this has not been possible, I have kept reeds wrapped and scraped at one altitude separate from others and only soaked and used those reeds in that altitude.

I am sure that you find that your own reeds have their own particular idiosyncrasies. I hope that this article will give you a place to start should you be faced with traveling to or between different altitudes and climates.

Rebecca Kemper Scarnati teaches oboe at Northern Arizona University in Flagstaff where she is the principal oboist of the Flagstaff Symphony and the Kokopelli Quintet. She earned both her bachelor and master of music degrees from Indiana University where she was awarded a performer’s certificate in oboe. She has performed with the Binghamton Symphony, Tri-Cities Opera, Desert Symphony (Palm Springs), Spoleto Festival Orchestra, Evansville Philharmonic, and the Wheeling Symphony. For three years she was oboist with the Con Spirito Woodwind Quintet, based in Pittsburgh. She has been on the faculty of the State University of New York at Binghamton and Ohio University.

James L. Dickie
1915 - 1995

James Dickie, former bassoonist with New York Philharmonic, N.B.C. Symphony, Houston Symphony, and bassoon professor at the University of Texas-Austin, passed away February 9, 1995 at his home in Kingsland, Texas. An article will follow in an upcoming issue.